Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Viruses ; 14(1)2022 01 08.
Article in English | MEDLINE | ID: covidwho-1614009

ABSTRACT

Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species (ROS) that can inactivate microorganisms. The botanical extract PhytoQuinTM is a powerful photosensitizer with antimicrobial properties. We previously demonstrated that photoactivated PhytoQuin also has antiviral properties against herpes simplex viruses and adenoviruses in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. Here, we report that human coronaviruses (HCoVs) are also susceptible to photodynamic inactivation. Photoactivated-PhytoQuin inhibited the replication of the alphacoronavirus HCoV-229E and the betacoronavirus HCoV-OC43 in cultured cells across a range of sub-cytotoxic doses. This antiviral effect was light-dependent, as we observed minimal antiviral effect of PhytoQuin in the absence of photoactivation. Using RNase protection assays, we observed that PDI disrupted HCoV particle integrity allowing for the digestion of viral RNA by exogenous ribonucleases. Using lentiviruses pseudotyped with the SARS-CoV-2 Spike (S) protein, we once again observed a strong, light-dependent antiviral effect of PhytoQuin, which prevented S-mediated entry into human cells. We also observed that PhytoQuin PDI altered S protein electrophoretic mobility. The PhytoQuin constituent emodin displayed equivalent light-dependent antiviral activity to PhytoQuin in matched-dose experiments, indicating that it plays a central role in PhytoQuin PDI against CoVs. Together, these findings demonstrate that HCoV lipid envelopes and proteins are damaged by PhytoQuin PDI and expands the list of susceptible viruses.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Photosensitizing Agents/pharmacology , Virus Inactivation/drug effects , Animals , Antiviral Agents/radiation effects , Cell Line , Cell Survival/drug effects , Cricetinae , Emodin/pharmacology , Emodin/radiation effects , Humans , Light , Photosensitizing Agents/radiation effects , Plant Extracts/pharmacology , Plant Extracts/radiation effects , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/drug effects , Virion/drug effects
2.
Viruses ; 12(12)2020 11 30.
Article in English | MEDLINE | ID: covidwho-948865

ABSTRACT

Bovine coronavirus (BCoV), a major causative pathogen of bovine enteric and respiratory diseases and a zoonotic pathogen transmissible between animals and humans, has led to severe economic losses in numerous countries. BCoV belongs to the genus Betacoronavirus, which is a model of a pathogen that is threatening human health and includes severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, and Middle East respiratory syndrome coronavirus. This study aimed to determine whether photocatalytic material effectively reduces CoVs in the environment. Using the film adhesion method of photocatalytic materials, we assessed its antiviral activity and the effect of visible light irradiation according to methods defined by the International Organization for Standardization. Consequently, photocatalytic material was found to have antiviral activity, reducing the viral loads by 2.7 log TCID50 (tissue culture infective dose 50)/0.1 mL (500 lux), 2.8 log TCID50/0.1 mL (1000 lux), and 2.4 log TCID50/0.1 mL (3000 lux). Hence, this photocatalytic material might be applicable not only to reducing CoVs in the cattle breeding environment but also perhaps in other indoor spaces, such as offices and hospital rooms. To our knowledge, this study is the first to evaluate the antiviral activity of a photocatalytic material against CoV.


Subject(s)
Antiviral Agents/radiation effects , Coronavirus, Bovine/radiation effects , Virus Inactivation/radiation effects , Animals , Cattle , Cell Line, Tumor , Coronavirus Infections/prevention & control , Humans , Light , Photochemical Processes , Titanium/chemistry , Titanium/radiation effects , Viral Load/radiation effects
3.
J Photochem Photobiol B ; 211: 111997, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-714374

ABSTRACT

The worldwide infection with the new Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) demands urgently new potent treatment(s). In this study we predict, using molecular docking, the binding affinity of 15 phenothiazines (antihistaminic and antipsychotic drugs) when interacting with the main protease (Mpro) of SARS-CoV-2. Additionally, we tested the binding affinity of photoproducts identified after irradiation of phenothiazines with Nd:YAG laser beam at 266 nm respectively 355 nm. Our results reveal that thioridazine and its identified photoproducts (mesoridazine and sulforidazine) have high biological activity on the virus Mpro. This shows that thioridazine and its two photoproducts might represent new potent medicines to be used for treatment in this outbreak. Such results recommend these medicines for further tests on cell cultures infected with SARS-CoV-2 or animal model. The transition to human subjects of the suggested treatment will be smooth due to the fact that the drugs are already available on the market.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus , Coronavirus Infections/drug therapy , Phenothiazines/pharmacology , Pneumonia, Viral/drug therapy , Antiviral Agents/chemistry , Antiviral Agents/radiation effects , Betacoronavirus/drug effects , Betacoronavirus/enzymology , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Host Microbial Interactions/drug effects , Humans , Lasers, Solid-State , Molecular Docking Simulation , Pandemics , Phenothiazines/chemistry , Phenothiazines/radiation effects , Photochemical Processes , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2 , Structure-Activity Relationship , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL